An Empirical Analysis Over the Four Different Feature-Based Face and Iris Biometric Recognition Techniques
نویسندگان
چکیده
Recently, multimodal biometric systems have been widely accepted, which has shown increased accuracy and population coverage, while reducing vulnerability to spoofing. The main feature to multimodal biometrics is the amalgamation of different biometric modality data at the feature extraction, matching score, or decision levels. Recently, a lot of works are presented in the literature for multi-modal biometric recognition. In this paper, we have presented comparative analysis of four different feature extraction approaches, such as LBP, LGXP, EMD and PCA. The main steps involved in such four approaches are: 1) Feature extraction from face image, 2) Feature extraction from iris image and 3) Fusion of face and iris features. The performance of the feature extraction methods in multi-modal recognition is analyzed using FMR and FNMR to study the recognition behavior of these approaches. Then, an extensive analysis is carried out to find the effectiveness of different approaches using two different databases. The experimental results show the equal error rate of different feature extraction approaches in multi-modal biometric recognition. From the ROC curve plotted, the performance of the LBP and LGXP method is better compared to PCA-based technique. KeywordsMulti-modal biometrics; Face Recognition; iris recognition; LBP operator (Local Binary Pattern); Local Gabor XOR Patterns; PCA and EMD.
منابع مشابه
Evaluation of the Parameters Involved in the Iris Recognition System
Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملA Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition
With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...
متن کاملRobust Iris Recognition in Unconstrained Environments
A biometric system provides automatic identification of an individual based on a unique feature or characteristic possessed by him/her. Iris recognition (IR) is known to be the most reliable and accurate biometric identification system. The iris recognition system (IRS) consists of an automatic segmentation mechanism which is based on the Hough transform (HT). This paper presents a robust IRS i...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012